A

120 MINUTES

1.		lues of the average (U_m) are in t			mean s	square velocity((U _r) and	l most probable
	A)	$U_a>U_r>U_m$	B)	$U_a>U_m>U_r$	C) U _r	$_{\rm m}>U_{\rm r}>U_{\rm a}$	D)	$U_r > U_a > U_m$
2.	The ma	J 1	dehydro	bromination o	f 2-bro	mo-2-methylbu	ıtane usi	ing ethoxide ion
	A) C)	2-methyl-2-bu 3-methyl-1-bu			B) D)	2-methyl-1-bi 3-methyl-2-bi		
3.	Hybrid A)	lization of phos	sphorus i B)	in PCl ₃ is sp ²	C)	sp^3d	D)	dsp^2
4.	In the I		ity distri	bution curve, v	with inc	creasing temper	ature, th	ne area under
	A) C)	increases remains the sa	ame		B) D)	decreases increases irreg	gularly	
5.	Which A) C)	among the following Cyclopropens	e	s aromatic?	B) D)	Cyclopropeny Cyclopropane		
6.		or the outermos	st electro			uthal quantum i I, Br	numbers	s will be the
	A)	1 and 2	B)	2 and 3	C)	3 and 4	D)	1 and 4
7.	Number A)	er of carbon ato 2	oms pres B)	ent per unit ce	ll of dia C)	amond is	D)	8
8.	occupy of oppo	all the corners	and fac	e centres of th	e unit c	alf the tetrahed cell. If all the I pletely, the mol	3 atoms	across one set
	A)	A_3B_4	B)	A_4B_3	C)	A_2B_3	D)	A_3B_2
9.						de or ketone on by hydrolysis is		
	A)	Cannizzaro re			B)	Reformatsky		1
	C)	Hofmann reac	tion		D)	Perkin reaction	n	

10.		l atom is		F ₃ , XeF ₂ an				one pairs on the
	A)	SF ₄ >XeF ₂ >IF			,	$IF_3>XeF_2>S$		
	C)	IF ₃ >SF ₄ >XeF	12		D)	XeF ₂ >IF ₃ >S	F ₄	
11.	Which 1. 2. 3. 4. A)	Frenkel defe Crystals with	e of Scho ct arises n metal e	ottky defect in crystals excess defec	raises the of in which the ets are gene		r ₊ /r ₋ is l d	sic conduction. 2,3 and 4
12.	Borano A)	e, B ₁₀ H ₁₄ is closo	B)	nido	C)	arachno	D)	hypho
13.	Which	of the followi	ng is a c	orrect equa	tion?			
	A)	$\left(\frac{\partial T}{\partial P}\right)_{\!H} = -\bigg($	$\left(\frac{\partial H}{\partial P}\right)_T$	C_P	B)	$\left(\frac{\partial T}{\partial P}\right)_{H} = \left(\frac{\partial T}{\partial P}\right)_{H}$	$\left(\frac{\partial H}{\partial P}\right)_T / C$	C_P
	C)	$\left(\frac{\partial T}{\partial P}\right)_{H} = C_{P}$	$/\left(\frac{\partial H}{\partial P}\right)$	$\Big _T$	D)	$\left(\frac{\partial T}{\partial P}\right)_{H} = -1$	$C_P / \left(\frac{\partial I}{\partial I} \right)$	$\left(\frac{H}{P}\right)_{T}$
14.	One of	f the reasons fo			-	•		
	A)	their small su			,	_		to-volume ratio
	C)	their amorph	ious stati	e	D)	their crystal	iiine sta	ie
15.		ermodynamic	-	of state is				
	A) C)	only to ideal only to gases	_	uide	B) D)	only to gase		y physical state
	,		-		,		•	
16.		lvantage of qua mainly due to		ots over org	ganic dyes f	or labeling bi	ological	cells, tissues
	A)	their high pho		lity and sen	sitivity			
	B)	their less toxi	c nature	and low co	st			
		their high the						
	D)	their poor rad	no opaci	ity and low	cnemicai a	ctivity.		
17.	Maxim A)	num number of	f phases B)	that can co	exist at equ C)	ilibrium in a t	three co D)	mponent system is 3
18.	The m	ajor product in CH ₃ CH ₂ O ⁻ Na			tion is: C₂H₅OH/55	°C →		
	A) C)	CH ₂ =CH ₂ CH ₃ CH ₂ OCH	H ₂ CH ₃		B) D)	CH ₃ CH ₂ OH CH ₃ CH ₂ CH		
19.	The co	omplex ion whi	ich exhil	oits optical	activity is			
	A)	[Co(en)(NH ₃		1	B)	$[Rh(NH_3)_3(p)]$		
	C)	$\left[\operatorname{Cr}(\operatorname{OX})_3\right]^{3}$			D)	$[Pt(NH_3)_2Cl$	2]	

20. Match the following items in list 1 with those in list 2 and identify the correct matching from the choices given below.

1.
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)$$

List 2

1. $\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$

a) Clapeyron equation

2. $\left(\frac{\partial (A/T)}{\partial T}\right)_{U} = -\frac{U}{T^2}$

Maxwell relation b)

3. $\frac{dP}{dT} = \frac{\Delta H}{T \Delta V}$

Reaction isochore c)

4. $\frac{d \ln K_P}{dT} = \frac{\Delta H^0}{RT^2}$

d) Gibbs' Helmholtz equation

1-b, 2-d,3-a,4-c A)

1-b,2-c,3-a,4-d B)

1-d, 2-a, 3-b,4-c C)

- 1-c,2-d,3-a,4-b D)
- 21. The first step in the Edman method for N-terminal amino acid determination in proteins involves
 - A) The reaction of protein with anhydrous hydrazine
 - B) The reaction of protein with C₆H₅NCS in the presence of dilute alkali
 - C) The reaction of protein with LiAlH₄
 - D) The reaction of protein with 1-fluoro-2, 4-dinitrobenzene.
- Which of the following complex ions has the highest CFSE? 22.
 - [NiCl₄]²-A)
- B) $[Mn(H_2O)_6]^{2+}$ C) $[Co(NH_3)_6]^{3+}$
- D) $[CoBr_4]^{2}$

23. The reaction given below is one example of

 CH_3 H_3C

A) Ullmann reaction

- B) Thorpe reaction
- C) Reimer-Tiemann reaction
- D) Mannich reaction
- 24. Total number of Co-Co bonds present in Co₄(CO)₁₂ is
 - 6 A)
- B) 8
- C)
- D)

4

25. Match the following items in list 1 with those in list 2 and identify the correct matching. 1. Alkali hydrolysis of an ester Pseudo first order a) 2. Acid hydrolysis of an ester b) Second order 3. Photochemical reaction of H₂ and Cl2 over water surface First order c) 4. Thermal decomposition N₂O₅ d) Zero order 1-b, 2-c, 3-d, 4-a 1-b, 2-d, 3-a, 4-c A) B) C) 1-b, 2-a, 3-d, 4-c D) 1-c, 2-a, 3-d, 4-b 26. Starch on hydrolysis with acids produces a quantitative yield of D-glucose. Enzymatic hydrolysis data suggest that All glucose units are joined by C_1 - $C_4 \alpha$ -links A) All glucose units are joined by C_1 - C_4 β -links B) All glucose units are joined by alternate C_1 - $C_6 \alpha$ - and β -links C) All glucose units are joined by C_1 - C_6 α -links D) Match the complex ions in list 1 with spin only magnetic moments given in list 2 and 27. identify the correct match. List 2 List 1 a) $[Fe(CN)_6]^{3-}$ 1) 3.87 BM b) $[Cr(NH_3)_6]^{3+}$ 2) 1.73 BM c) $[CoF_6]^{3}$ 3) 5.92 BM d) $[Ni(H_2O)_6]^{2+}$ 4) 4.87 BM 5) 2.83 BM A) a-3, b-1, c-4, d-5 B) a-2, b-1, c-4, d-5 a-2, b-1, c-3, d-4 a-3, b-5, c-1, d-2 C) D) 28. A first order reaction takes 50 minutes to complete 90% of the reaction. Time taken to complete 99.99% of the reaction is 65 minutes 100 minutes C) 150 minutes D) 200 minutes A) B) 29. The common bases in DNA are purine bases adenine, thymine and pyrimidine bases guanine, cytosine A) B) purine bases thymine, uracil and pyrimidine bases guanine, cytosine purine bases cytosine, uracil and pyramidine bases adenine and guanine C) purine bases adenine, guanine and pyrimidine bases thymine and cytosine D) 30. Select the wrong statement: Log β value of $[Ni(en)_3]^{2+}$ is much greater than that of $[Ni(NH_3)_6]^{2+}$ A) Alkaline hydrolysis of [Co(py)₅Cl]²⁺ with OH⁻ does not occur by D-CB mechanism B) Electronic absorption spectrum of $[\mathrm{Ti}(\mathrm{H_2O})_6]^{3+}$ consists of a single broad band with C)

D)

only values.

Observed magnetic moments of octahedral Co(II) complexes are nearly equal to spin

- 31. If the reaction mechanism consists of these elementary processes,
 - i. A = 2 B (fast, equilibrium)
 - ii. $B + 2C \rightarrow E \text{ (slow)}$
 - iii. $E \rightarrow F$ (fast)

Choose the correct differential rate law for the reaction

$$A + 4C \rightarrow 2F$$

- A) $(1/2)(d[F]/dt) = k[A][C]^4$
- B) rate = $k[A][C]^2$
- C) $(d[F]/dt) = k[A]^{(1/2)}[C]^2$
- D) $-d[A]/dt = k[A]^{(1/2)}[C]$
- 32. Match the items in column A with appropriate ones in column B and identify the correct match from the choices given below.

Column A

- a) Camphor
- b) Papaverine
- c) α-Pinene
- d) Quinine
- A) a-1,b-4,c-2,d-3
- C) a-1, b-2,c-4,d-3

Column B

- 1. Occurs in nature and is optically active
- 2. Contains a cyclobutane ring
- 3. Used as an antimalarial
- 4. Does not contain any chiral centre
 - B) a-2.b-1,c-3,d-4
 - D) a-4,b-3,c-2,d-1
- 33. Free radicals can easily be detected by
 - A) NMR spectroscopy
- B) IR spectroscopy

C) UV spectroscopy

- D) ESR spectroscopy
- 34. Nephelauxetic effect is related to
 - A) abnormal magnetic properties
 - B) Jahn-Teller distortion
 - C) Covalent interaction between metal and ligand
 - D) splitting of d-orbitals
- 35. Which of the following is not a characteristic of chemisorptions?
 - A) Enthalpy of adsorption is relatively high.
 - B) Adsorption cannot occur at high temperature
 - C) Adsorption leads to a monolayer
 - D) Adsorption is irreversible

36. Match the items in column A with appropriate ones in column B and identify the correct match.

	Column A		Column B			
a)	The sol-gel process for low	1.	Self assembly			
	temperature ceramic formation					
b)	The vapour deposition technique	2.	A controlled hydrolysis of tetraethyl			
			silicate in aqueous alcohol			
c)	'Top- down' synthesis method	3.	Vapourization of metals using plasmas or			
			high energy beam			
d)	'Bottom-up' synthesis method	4.	Conversion of silane to films of			
			amorphous semiconductor silicon			

A) a-4	4, b-3,	c-2,	d-1
--------	---------	------	-----

B) a-2, b-3, c-1, d-4

D) a-1, b-2, c-4, d-3

37. The magnitude of the response to an agonist in the presence of an antagonist will depend on the relative affinities of the receptor for the antagonist and the agonist. The concentration at which an antagonist (drug) exerts half its maximum effect is known as its

- A) LD_{50}
- B) PH₅₀
- C) IC 50
- D) IG 50

38. In the titration of oxalic acid against potassium permanganate, the reaction is slow at the beginning. As the titration proceeds, the reaction speeds up. Which of the following is the reason for this observation?

A) The reaction is exothermic and the enthalpy of the initial reaction provides activation energy for further reaction

D)

B) The potassium ion introduced into the solution catalyses the reaction

C) The manganese ion introduced into the solution catalyses the reaction

D) The carbon dioxide formed in the reaction catalyses the reaction.

39. Drugs are classified in different ways. Match the items in column A with appropriate ones in column B and identify the correct match.

Column A

Column B

1. Diuretics

- a) Based on chemical structure
- 2. Peptides
- b) Based on pharmacological actionc) Based on physiological classification
- 2. Peptides3. Levodo pa

d) Prodrugs

C)

4. Psychotropic drugs

a-2, b-1, c-4, d-3

A) a-2, b-3, c-1, d-4

- B) a-1, b-2, c-3, d-4
- 40. A cermet is a composite material composed of

a-2, b-1, c-3, d-4

- A) cement and metallic materials
- B) carbon fibre and a metal matrix
- C) ceramic and metallic materials
- D) ceramic and a carbon fibre matrix

41. The correct structure of diazepam is

D)

- 42. The property measured in derivative thermo gravimetric analysis is
 - A) change in weight

- B) heat evolved or absorbed
- change in temperature
- D) rate of change of weight
- 43. The percentage purity of a sample of copper sulphate can be determined by
 - A) Iodometry

B) Polarography

C) Electrogravimetry

D) All of these

44.					-	is, the atom		d by			
	A)		-			of daughter	element				
	B)			-	f neutr						
	C)					reaction					
	D)	nu	clear	recon							
45.	In bi		cal sys		the m	etal ions inv Fe ²⁺ , Cu ²⁺	olved in tr C)	ransmission K ⁺ , Na ⁺	of nerve im	npulse are Zn ²⁺ ,Mg ²⁺	
	A)	1 V1	g ⊤,C	a	D)	re , Cu	C)	K, Na	D)	ZII ,IVI	
46.	Whi A) B) C) D)	oxi Th CC	D is didizing e sam	define g orga ple fo a mea	ed as the anic material or BOE sure or	ement is income amount of atter under a determination of diss	dissolved erobic con is usua ally oxidiz	ditions. Ily incubate able and bio	d for five d	ays.	ole.
47.	The A)	metal Zi		resent	in vita B)	amin B-12 is Calcium	C)	Iron	D)	Cobalt	
10	Conk		أمنين	0.00							
48.	A)				ontains	ses CO ₂	B)	7n (II) ar	nd hydrolys	es peptide bor	de
	C)		` /	-		rses CO ₂	D)	, ,		es peptide bor	
	Ο)	111	8 (11)	4114 11	9 41019	565 662	2)	1118 (11) 41	ia ilyarotys	es peptiae sor	IGS
49.			state	of iro		et-haemoglo					
	A)	3			B)	2	C)	4	D)	zero	
50.	-					table is given form of Γ .	below ald	ong with a re	educible re	presentation, Γ	
	_	C _{3V}	E	2C ₃	$3\sigma_{v}$						
		A_1	1	1	1						
		A_2	1	1	-1						
		E	2	-1	0						
			_	_	_						
		1	7	1	-1						
	A)	Γ	l				B)	$\Gamma = 4A_1$	$+ A_2 + E$		
		Γ					D)	$\Gamma = A_1 + A_2$	$2A_{2} + 2E$		
	-,	_	U 1 2				-,		- 112 · - 22		
51.	The	gas co	ommo	nly us	sed in 1	ICP-AES is					
	A)	Ar	gon	•			B)	Carbon d	ioxide		
	C)	Hy	droge	en			D)	Nitrous o	xide		
52.						r a one dime					
	prin	cipai a	XIS, S	ymme	etric to		version and		etric to hor	izontal plane, i	IS
	A)	A	g		B)	$B_g^{"}$	C)	$B_{u}^{'}$	D)	A_1	

53.		Which of the following is the correct selection rule for the rotational spectrum of symmetric top molecule?										
	A)	etric top motec $\Delta J = \pm 1; \Delta K$			B)	$\Delta J = 0$	+1· Λ <i>K</i>	=0				
	C)	$\Delta J = 0, \pm 1; \Delta$			D)	·						
<i>5</i>	,						ĺ					
54.	A)	resonance is the Two fundame			because	of the ir	nteraction	on betw	veen			
	B)	Two overtone										
	Ć)			overtone tran	sitions							
	D)	All of these										
55.		the statement							_			
	A)		-	spectra of lan		-			-			
	B)	-		lues of lanthar		_	calculat	ed usin	ig the	equation		
	$g[J(J+1)]^{1/2}$ agrees with the experimental values											
	C) D)	Common oxidation state of lanthanides is +3 Coordination number in lanthanide complexes never exceeds 8										
	D)	Coordination	i iiuiiioci	iii iaiitiiaiiide	compie	aes neve	1 CACCC	us o				
56.	Which of the following statements are true? 1. For a diatomic molecule the selection rule for pure rotational Raman spectra is $\Delta J = \pm 2$											
	1.					-			-			
	2.			n spectra of s	ymmetri	ic top mo	olecules	s, every	alter	nate R-line v	will	
	•	be overlapped	-									
	3.	Spherical top	molecul	es do not give	pure ro	tational l	Raman	spectra	l.			
	A)	1 and 2	B)	1 and 3	C)	2 and 3	3	D)	1,2	and 3		
57.		g the major eve		~ ~		•					` /	
		d may return to		and state (S_0) by				. This p	proces	ss is known a	as	
	A) C)	Radiationless Internal conv	-		B) D)	Fluore Phosph		nce				
50	,			1 1		•			1	C .		
58.		conductance ti	_	-		ce is pio	tted aga	ainst vo	lume	of strong		
	alkali added to strong acid, the slope of the curveA) decreases at first and remains constant after the end point											
	B)			ncreases after			1					
	C)	increases at fi	irst and d	lecreases after	the end	point						
	D)	increases at fi	irst and r	emains consta	nt after	the end	point					
59.	Match	the following	and iden	tify the correc	t answe	r.						
		<u>List I</u>					List 2					
	a)	Potentiometri				1)		w catho		-		
	b) c)	Atomic absor HPLC	ption spe	ectroscopy		2) 3)		eum ind Ilution	-	7		
	d)	Turbidimetry				4)	-	reaction				
	A)	a-3,b-4,c-1,d-			B)	a-2,b-3	.c-4.d-1	l				
	C)	a-1,b-2,c-3,d-			D)	a-4,b-1						

60.		uclear magnet outanol will be			e H-atom attached to the second carbon atom					
	A) C)	Six fine structure Eight fine structure	cture pea	ıks	B) D)	12 fine structu	-			
61.			-	-		(n, l, m_l, m_s) beson atom (Atomic				
	A)	$4, 0, 0, \frac{1}{2}$	B)	4, 0, 1, ½	C)	$4, 1, 1, \frac{1}{2}$	D)	$4, 1, 2, \frac{1}{2}$		
62.	High A) C)	lattice energy i Small ion, h Large ion, lo	igh char	_	s favour B) D)	red by Small ion, low charge Large ion, high charge				
63.	Comp A) C)	oounds of nitro Ionic polar	gen and	phosphorus ar	e mostly B) D)	Covalent All varieties ar	re possi	ible		
64.	The c	common featur	es amon	g the species C	CN ⁻ , CO	O, NO ⁺ are				
	A) C)					Bond order thr Isoelectronic a		weak field ligan k field ligands	ds	
65.		orrect order of nd BCl ₃ is	`hybridiz	zation of the ce	entral ato	om in the followi	ing spe	cies NH ₃ [PtCl ₄]]2-	
		dsp^2 , dsp^3 ,	sp ² and	sp^3	B)	sp^3 , dsp^2 , dsp	p^3 , sp^2			
	C)	dsp^2 , sp^2 , sp	p^3 , dsp^3		D)	sp^3 , dsp^2 , sp^2 ,	dsp^3			
66.	Which A)	h of the follow Lu ³⁺	ing triva B)	lent lanthanide Gd ³⁺	e ions is C)	diamagnetic Eu ³⁺	D)	Yb^{3+}		
67.	Which A)	h one of the fo XeO ₂ F ₂	llowing i	is hygroscopic XeOF ₄	and exp	olosive? [XeO ₆] ⁴⁻	D)	XeO ₃		
68.		onomeric BH ₃ c orbital on B			place the	e molecule in the	xz pla	ne. Which		
	A)	2s	B)	$2p_x$	C)	$2p_y$	D)	$2p_z$		
69.	The co	ompound which V(CO) ₆	eh is an e B)	exception of EA Cr(CO) ₆	AN rule C)	is Fe (CO) ₄ (PPh	n ₃) D)	Ni(PF ₃) ₄		
70.				ents, when trea		h phenyl magnes	iuim b	romide		
	A)	Ethanol	B)	Oxirane	C)	Acetaldehyde	D)	Ethylene		
71.	Myog A) B) C) D)	Very differen Very similar Very similar	nt primai primary primary		structur ructures t differe					

72. Which of the following is **not** aromatic?

73. Which side-chain carbon makes a new bond to the benzene ring upon Claisen rearrangement of the following allylic phenyl ether?

- A) C1
- B) C2
- C) C3
- D) C4
- 74. The reaction involved in the conversion of isoborneol to camphene is
 - A) Beckmann rearrangement
- B) Cope rearrangement
- C) Wagner-Meerwein rearrangement
- D) Claisen rearrangement
- 75. The reactive intermediate in a typical Hoffmann rearrangement is a
 - A) Nitrene
- B) Benzyne
- C) Dienone
- D) Carbene
- 76. Which of the following is true of any (S)-enantiomer?
 - A) It rotates plane-polarized light to the right.
 - B) It rotates plane-polarized light to the left.
 - C) It is a racemic form.
 - D) It is the mirror image of the corresponding (R)-enantiomer.
- 77. What can be said with certainty if a compound has $[\alpha]25/D = 9.25^{\circ}$?
 - A) The compound has the (S) configuration.
 - B) The compound has the (R) configuration.
 - C) The compound is not a meso form.
 - D) The compound possesses only one stereogenic center.

- - A) P and Q B) R and S C) P and R D) Q and S
- 79. The Diels-Alder reaction is *not* initiated by light. Which of the following pairs of orbitals show the symmetry problem that results from photochemical excitation of the diene in the Diels-Alder reaction, thus preventing constructive orbital overlap?

- 80. Which of the following compounds can be obtained in an optically active form?
 - (i) Menthol

A)

- (ii) Camphor
- (iii) Lanalool
- (iv) Terpinolene

- A) (i) and (ii)
- B) (iii) and (iv)
- C)
- (i), (ii) and (iii) D)
- (i), (ii) and (iv)
- 81. What is the chemical difference between cellulose and chitin?
 - A) Replacement of the hydroxyl group at C2 with an acetylated amino group
 - B) Replacement of the hydroxyl group at C3 with an acetylated amino group
 - C) Replacement of the hydroxyl group at C4 with an acetylated amino group
 - D) Replacement of the hydroxyl group at C5 with an acetylated amino group
- 82. Which of the following pairs of amino acids might contribute to protein conformation by forming electrostatic interactions?
 - A) Glycine and leucine
- B) Glutamate and lysine
- C) Phenylalanine and tyrosine
- D) Lysine and arginine
- 83. Which of the following statement about haemoglobin is correct?
 - A) 2,3-Bisphosphoglycerate (BPG) increases the affinity of haemoglobin for oxygen
 - B) Deoxygenated haemoglobin has a higher binding affinity for protons than has oxyhaemoglobin.
 - C) Haemoglobin has a higher affinity for oxygen than does myoglobin
 - D) One molecule of haemoglobin binds sixteen molecules of oxygen four per subunit

84.	Which i)	one would you LiCl(s)	-	o have highes KCl(s)	t lattice	energy and lo RbCl(s)	west lattiv)	tice energy? CsCl(s)
	A)	LiCl(s) has hig	hest latt	tice energy an	d CsCl	(s) has lowest	lattice er	nergy
	B)	LiCl(s) has hig	hest latt	tice energy an	d RbCl	(s) has lowest	lattice e	energy
	C)	LiCl(s) has lov						
	D)	CsCl(s) has hi	ghest la	ttice energy a	nd RbC	l(s) has lowes	t lattice	energy
85.	What i	s the concentration 1.25 x 10 ⁻⁵ M	on of A B)		turated C)	silver chloride 3.39 x 10 ⁻⁴ N		n? Ksp = 1.56×10^{-10} . $3.12 \times 10^{-6} M$
86.	Which	of the following	g statem	ent is true?				
	A)	$\Delta S_{universe} =$	ΔS_{syster}	$_{\rm m}$ $ \Delta S_{\rm surrou}$	ındings			
	B)	Since $dS = dq/T$ whether the pr	Γ and do	I = 0 for adiab	oatic cha	-	e dS is al	ways zero
	C)	At absolute zer						
	D)	The equation C	p- Cv =	$VT\alpha^2/\beta$ is va	lid for s	solids, liquids	and gase	es.
87.		y high pressure to the gas adsorb re)	_	, ,				•
	A)	x/m = b/a	B)	x/m = 1/ap	C)	x/m = ap	D)	x/m = a/b
88.		of the following on (Q)?	g expres	sion gives the	relatio	n between ene	rgy (E) a	and partition
	A)	$E = (K_B T^2 / Q) :$	$x (\delta Q/\delta)$	$\Gamma)_{\rm NV}$	B)	$E = (K_B T/Q$	2) x (δQ^{2}	$^{2}/\delta T)_{NV}$
	C)	$E = (K_B T^2 / Q) x$	$x (\delta Q^2/\delta$	$T)_{NV}$	D)	$E = (K_B T^2/C$	$Q) \times (\delta Q^2)$	$^{2}/\delta T)_{NV}$
89.	Which	of the following	detecto	ors give conce	entration	n-denendent si	gnals?	
	A)	Infra-red detect	•	B	B)	Electron-capt	_	ctor
	C)	Thermal condu	ctivity		D)	All of these		
90.	Choos	e the correct sta	tement					
	A)	The esr spectru	m of na	phthalene rad	ical anio	on consists of	25 lines	
	B)	The molecule v	which is	IR inactive b	ut Rama	an active is SC) ₂	
	C)	The trans isome	ers posse	es more IR ba	nds that	n the correspon	nding cis	sisomers
	D)	The microwave	spectra	are not obser	ved in t	he gaseous sta	ite of ato	ms and molecules
91.		NA double – hel		ine and cytosi				y
	A)	Covalent bonds	3		B)	Hydrogen bo		
	C)	Peptide bonds			D)	Hyper conju	gation	

92.		following solutiation)	tions wl	hich will have t	he high	est ionic streng	gth (Ass	ume complete
	A) C)	0.050 M AlC 0.050 M CaC			B) D)	0.100M NaC 0.100 M HC		
93.	A) TB) TC) T	he number of c he number of c he number of c	ollision ollision ollision	ment is not cor is proportional is proportional is proportional increases with	to the stothe stothe s	square root of psquare of no. o	pressure f molec	ules
94.	If unce	• •		I momentum ar $1/m (h/4\pi)^{1/2}$	-		•	•
95.	If two A) C)	operations con They are Her They have the	mitian	then eigen functions	B) D)	They are line They have the		eigen values
96.	To cal A) C)	culate the μ_{SL} , 3/2 and 3, 4/2 3/2 and 3, 5/2	and 0	ues of S and L f	For Cr ³⁺ B) D)	and Fe ³⁺ are 5/2 and 2, 2/ 1/2 and 2,		2
97.	Term	symbol for F ₂ ⁺	ions is					
	A)	$^{1}\Sigma_{g}^{+}$	B)	$^2\sum_u^+$	C)	$^{2}\pi_{\mathrm{u}}$	D)	$^2\pi_{ m g}$
98.	Use H	lückel theory to	determ	ine the energie	s of the	π orbitals of the	ne allyl	radical system, C ₃ H ₄ .
	A)	$\alpha + \beta$, α , α - β			B)	$\alpha + 2\beta, \alpha, \alpha$	•	
	C)	α, α, α			D)	$\alpha + \sqrt{2} \beta, \alpha,$	α-√2 β	
99.	$C_2O_4^2$	is an example	of a mo	olecule belongii	ng to the	epoint	group.	
	A)	D_2d	B)	C_2h	C)	D_3h	D)	D_2h
100.		naracter table o	f the D ₃	h point group c	an be co	onstructed as the	he direct	t product of
	A)	S_3 and C_{3v}	B)	C_s and C_{2v}	C)	C_s and C_{3v}	D)	D_{2d} and C_{3v}
						of plates which		

102.	For a	typical adsor	bent suc	h as silica gel, t	he mos	t popular pore	diamete	ers are	
	A)	10 and 50 A	Å		B)	60 and 100 a	Å		
	C)	100 and 150	Å		D)	150 and 200	ΛÅ		
103.				of increasing wa (alkene), (3)			_		
	A)	$(1) < (2) \approx ($	(3) < (4)		B)	$(4) < (3) \approx ($	(2) < (1))	
	C)	$(3) < (4) \approx (4)$	2) < (1)		D)	$(1) < (4) \approx 0$	(2) < (3)		
104.		and ¹³ C NMF Five ¹ H sign Six ¹ H signa Six ¹ H signa	R spectranals and als and sals		s	H ₃) ₂ CHCH ₂ C(O)CH=(CH ₂ have in ¹ H	
105.	Which	of the follow	ving part	tition functions	has hig	hest magnitude	e?		
	A)	translational	B)	rotational	C)	vibrational	D)	electronic	
106.	Which A)	of the follow Ni(CO)4	ving com	npounds contair	ns a squ B)	are planar met Ir(CO)Cl(P		e?	
	C)	$Ni(\eta^3-C_3H_5)$	s) ₂		D)	$Cr(NO)_4$			
107.	Which additive		ving is u	seful for detern	nination	n of volatilities	of plast	icizers and other	
	A) C)	Thermo gra Scanning el		•	B) D)	Differential Atomic force		ng calorimetry oscopy	
108.	The t A)	ensile strengt 63 x 10 ⁶		MWNT is63 x 10 ⁷		63 x 10 ⁸	D)	63 x 10 ⁹	
109.	Nano A)	particles of w Copper	hich ato B)	m are used to co Aluminium	ontrol o	collateral dama Carbon	ge due t D)	o explosion? Lead	
110.	Which A) C)	Advanced n Biomaterial	naterial	and and contrac	et in res B) D)	ponse to an app Smart mater Nanomater	rial	ectric field?	
111.	Whic	ch one of the	following	g is non-linear	materia	1?			
	A) C)	Zirconium o Maghemite	oxide		B) D)	Magnetite Lithium niol	bate		
112.	Effect	of gaseous p	ollutants	depends mainl	y on th	eir			
	A) C)	hydrophobic solubility in		re	B) D)	ability to set longevity in		n	
	\sim	Join Office III	,, acc1		וע	TOILS VILLY III	W 11		

113.	Which	n of the followi	ng is a b	ranched cha	in polym	er?		
	A)	HDPE			B)	LDPE		
	C)	isotactic poly	propyle	ne	D)	amylose(st	arch)	
114.	The st	tudy of fracture	surfaces	s of polymer	ic materi	al is done usir	1g	
	A)	Atomic force			B)	X-ray diffra	-	
	C)	Thermo gravi	imetric a	nalysis	D)	Scanning e	electron n	nicroscopy
115.	Which	n of the followi	ng polvr	ner has este	r linkage?	•		
	A)	Nylon 66	B)	PVC	C)	Terylene	D)	SBR
116.	The in	verse operatio	on of S ₃ o	operation is				
	A)	S_3^2	B)	S_3^3	C)	S_3^4	D)	S_3^5
117.	Which	n of the followi	ng pairs	of receptors	are likely	v to show the	greatest s	structural
	simila		<i>8</i> F ·· ·		•	,	8	
	A)	The dopamin	e recepto	or subtypes l	D ₃ and D ₅			
	B)	The M ₂ musc	arinic re	ceptor and the	he β2-adre	energic recept	or	
	C)	The H ₂ histan	nine rece	eptor and the	α_1 -adren	oceptor		
	D)	The H ₁ histan	nine rece	eptor and the	β_2 adren	oceptor		
118.	Which	n of the followi	ng stater	ment is true?)			
110.	A)	The most stat	_			also the active	conform	nation
	B)	The active co			_			
	C)							hen it binds to
	,	its target bin				1 2	C	
	D)	The active co	_		etermined	l by conforma	itional an	alysis
110	Matah	the fellowing	itama in	aalumm A v	with annua	muists smag in		D and identify
119.		the following rrect match.	items in	COIUIIIII A V	vitii appit	priate ones ii	i colullili	b and identify
		Column A	_			Column B		
	a)	Nylon-6		1)	Tran	s-poly(2-chlo	ro-1 3-bu	ıtadiene)
	b)	Neoprene		2)		amide	, , , , , ,	
	c)	Kevlar		3)		olactam		
	d)	Natural rubbe	er	4)		oly(2-methyl-	1,3-butac	liene)
	A)	a-1,b-3,c-2,d	-4		B)	a-3,b-1,c-2	.,d-4	
	C)	a-2,b-3,c-4,d-			D)	a-3,b-2,c-4,		
	•				ŕ			

120. The structure of chloramphenicol is

C)
$$O$$
 O CH_3 O CH_3
